A Max-plus Finite Element Method for Solving Finite Horizon Deterministic Optimal Control Problems
نویسندگان
چکیده
We introduce a max-plus analogue of the Petrov-Galerkin finite element method, to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation, and exploits the properties of projectors on max-plus semimodules. We obtain a nonlinear discretized semigroup, corresponding to a zero-sum two players game. We give an error estimate of order √ ∆t + ∆x(∆t), for a subclass of problems in dimension 1. We compare our method with a max-plus based discretization method previously introduced by Fleming and McEneaney.
منابع مشابه
The Max-Plus Finite Element Method for Solving Deterministic Optimal Control Problems: Basic Properties and Convergence Analysis
We introduce a max-plus analogue of the Petrov-Galerkin finite element method to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation. We show that the error in the sup norm can be bounded from the difference between the value function and its projections on max-plus and min-plus semimodules, when the max-plus analogue of the stiff...
متن کاملThe Finite Horizon Economic Lot Scheduling in Flexible Flow Lines
This paper addresses the common cycle multi-product lot-scheduling problem in flexible flow lines (FFL) where the product demands are deterministic and constant over a finite planning horizon. Objective is minimizing the sum of setup costs, work-in-process and final products inventory holding costs per time unite while satisfying the demands without backlogging. This problem consists of a combi...
متن کاملRobust control of constrained max-plus-linear systems
SUMMARY Max-plus-linear (MPL) systems are a class of nonlinear systems that can be described by models that are " linear " in the max-plus algebra. We provide here solutions to three types of finite-horizon min-max control problems for uncertain MPL systems, depending on the nature of the control input over which we optimize: open-loop input sequences, disturbances feedback policies, and state ...
متن کاملFinite-Horizon Min-Max Control of Max-Plus-Linear Systems
In this note, we provide a solution to a class of finite-horizon min–max control problems for uncertain max-plus-linear systems where the uncertain parameters are assumed to lie in a given convex and compact set, and it is required that the closed-loop input and state sequence satisfy a given set of linear inequality constraints for all admissible uncertainty realizations. We provide sufficient...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008